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approach outlined in this paper. The predicted diffraction 
effects based on the computer simulation approach do 
not affect the main conclusion of Pandey et al. (1980a) 
that the 2H to 6H transformation in SiC occurs by the 
layer displacement mechanism. 

References 

AHLERS, M. & PLEGRINA, J. U (1992). Acta Met. Mater. 40, 3213-3220. 
CARDELLINI, F. & MAZZONE, G. (1993). Philos. Mag. A67, 1289. 
DEMIN, S. A., NEKRASOV, A. A. & USTINOV, A. I. (1993). Acta Met. 

Mater. 41, 2091-2095. 
FREY, F. & BOYSEN, H. (1981). Acta Cryst, A37, 819-826. 
HITZENBERGER, C., KARNTHALER, H. P. & KORNER, A. (1985). Acta Met. 

Mater. 33, 1293-1305. 
HOLLOWAY, H. (1969). J. Appl. Phys. 40, 4313-4321. 
JAGODZINSKI, H. (1971). Kristallogr. 16, 1235-1246. 
JEPPS, N. W. & PAGE, T. F. (1980). J. Microsc. 119, 177-188. 
KABRA, V. K. & PANDEr, D. (1988). Phys. Rev. Lett. 61, 1493-1496. 
KABRA, V. K., PANDEY, D. & LELE, S. (1986). J. Mater. Sci. 21, 1654- 

1666. 
KABRA, V. K., PANDEY, D. & LELE, S. (1988). J. Appl. Cryst. 21, 935- 

942. 
KRISHNA, P. & IVIARSHALL, R. C. (1971a). J. Cryst. Growth, 9, 319- 

325. 

KmSHNA, P. & I~HALL, R. C. (1971b). J. Cryst. Growth, 11, 147- 
150. 

M_INAGAWA, T. (1978). J. Appl. Cryst. 11, 243-247. 
MUTO, S., VAN TENDELOO, G. & AMELINCKX, S. (1993). Philos. Mag. 

B67, 443-463. 
NIKOLIN, B. I., BABKEVICH, A. Yu., IZDKOVSKAYA, T. V. & PETROVA, 

S. N. (1993). Acta Met. Mater. 41,513-515.  
OGBUn, L. U., MITCHELL, T. E. & HEUER, A. H. (1981). J. Am. Ceram. 

Soc. 64, 91-99. 
PANDEY, D. (1976). PhD thesis, Banaras Hindu Univ., India. 
PANDEY, D. (1984). Acta Cryst. B40, 567-569. 
PANDEY, D., KABRA, V. K. & LELE, S. (1986). Bull. Miner. 109, 49-67. 
PANDEY, D. & KRlSHNA, P. (1976). Acta Cryst. A32, 488-492. 
PANDEY, D. & KRISHNA, P. (1982). Current Topics in Materials 

Science, Vol. 9, edited by E. KALDIS, pp. 415--491. Amsterdam: 
North-Holland. 

PANDEY, D. & KRISHNA, P. (1983). Prog. Cryst. Growth Charact. 7, 
213-252. 

PANDEY, D. & LELE, S. (1986). Acta Metall. 34, 405-413, 415-424. 
PANDEY, D., LELE, S. & KRISHNA, P. (1980a). Proc. R. Soc. London Ser. 

A, 369, 435--449. 
PANDEY, D., LELE, S. & KRISHNA, P. (1980b). Proc. R. Soc. London Ser. 

A. 369, 451-461. 
PANDEY, D., LELE, S. & KRISHNA, P. (1980c). Proc. R. Soc. London Ser. 

A, 369, 463-477. 
SEBASTIAN, M. T., PANDEY, D. & KmSHNA, P. (1982). Phys. Status 

Solidi A, 71,633-640. 
WILSON, A. J. C. (1942). Proc. R. Soc. London Ser. A, 180, 277-285. 

Acta Cryst. (1995). A51,335-343 

Arithmetic Properties of Module Directions in Quasicrystals, Coincidence Modules and 
Coincidence Quasilattices 

BY O. RADULESCU 

Laboratoire de Recherche sur les Matdriaux, Universit~ Marne-la-Vallde, Bduiment IFI, 2 rue de la Butte Verte, 
93166 Noisy-le-Grand, France 

AND D. H. WARRINGTON* 

Department of Engineering Materials, University of Sheffield, PO Box 600, Sheffield S1 4DH, England 

(Received 20 June 1994; accepted 13 October 1994) 

Abstract 

Two new concepts are introduced that are useful for the 
classification of grain boundaries of quasicrystals: the 
coincidence module and the coincidence quasilattice. 
Related to these concepts is the distribution of lengths in 
different directions of a quasicrystalline module, which, 
for quasicrystals whose geometry is based on quadratic 
irrational numbers, is determined by an arithmetic form 
of the type sx 2 - y 2 ,  where s is a square-free integer. 

I. Introduction 

Rotation of two identical lattices with respect to each 
other leads, for some special values of the rotation angle, 

* Honorary reader. 
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to coincidences of the vertices. In the case of normal 
crystals, these coincident vertices form the coincidence- 
site lattice (CSL) (Friedel, 1964; Warrington & Buffalini, 
1971; Grimmer, Bollmann & Warrington, 1974). The 
CSL is important in crystallography because it allows a 
nontrivial classification of grain boundaries and because 
small-unit-cell CSL grain boundaries seem to be 
energetically favoured (see, for instance, Sutton & 
Balluffi, 1987). 

It has been shown (Warrington, 1992, 1993a,b) that 
coincidences of the vertices appear also in quasicrystal- 
line tilings. We give here some geometrical tools needed 
for the study of coincidences in quasicrystals. We first 
introduce in a unifying perspective the projection 
schemes for quasicrystals based on quadratic irrational- 
ities, then discuss the concepts of the coincidence module 
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and quasirational rotations, which are generalizations of 
the concepts of coincidence-site lattice and coincidence 
rotation (Grimmer & Warrington, 1985). We show that 
the existence of coincidences in quasicrystals is con- 
nected to the commensurability of different module 
directions. The commensurability classes of module 
directions add to the classification scheme given by 
Radulescu [1993; hereinafter referred to as (I)]. Some 
results from (I) are discussed again here, in a more 
general framework. We also present within the cut-and- 
projection method (see, for instance, Katz & Duneau, 
1986) the concept of the coincidence quasilattice, which 
is the set of coincidences in a quasiperiodic tiling. 

2. B r a v a i s  m o d u l e  o f  q u a s i c r y s t a l s  

Diffraction from quasicrystals gives Bragg peaks that 
have as support a finite rank module L I1., the Fourier 
module. With certain conditions (discussed later), L II* is 
the projection onto a d-dimensional physical space EII of 
an n-dimensional hyperlattice L* (reciprocal hyperlattice) 
from E,, the n-dimensional Euclidean space n > d. The 
dual of L* is the Bravais hyperlattice L and the projection 
of L onto E tl is the Bravais module L II. If L is a primitive 
hypercubic lattice,t L" and L I1. differ only by a scale 
factor. 

The Bravais module is a generalization of the Bravais 
lattice of normal crystals. Although quasicrystals are not 
periodic structures, atomic rows and planes of quasi- 
crystals are parallel to module directions and planes of 
the Bravais module [Kupke, Peschke, Carstanjen & 
Trebin, 1991; (I)]. In particular, the vertices of 
quasicrystalline tilings obtained by cut and projection 
(Katz & Duneau, 1986) are discrete subsets of the 
Bravais module. 

Let {el-I}i_ln be a set of generators of L II, LII= 
{~--~i=l ziell,-Zi ~ }  and let /-' be its metric matrix, 
--i,jl" = ~,~i(~ll, ~:ĵ llxll), where (. ,  ,)11 stands for the dot product 
in EII. Let us further suppose that F satisfies the 
following three conditions that are valid for all the 
experimentally interesting symmetries (octagonal, dec- 
agonal, dodecagonal, icosahedral): 

(C1) Hadwiger's condition /- ,2=/-,  (see Coxeter, 
1963). 

(C2) Irrationality condition/"u = u,  u ~ L =~ u = 0. 
(C3) Quadratic irrationality condition F = A + Bs ~/2, 

where A and B are symmetrical commuting rational 
matrices and s is a square-free number (i.e. a number that 
has no squares among its divisors). 

(C1) implies that F is the projector onto EII, and the set 
of generators {el)}i=l., is the projection onto E I~ of the 
canonical basis {ei}i__l. , of E,; L" = FL,  where 

n 
L = {)--~i=l z, ei} is the n-dimensional hypercubic lattice. 
(C2) implies that E II has an irrational orientation with 
respect to L. From (C1) and (C3), it follows that 

"fThe cases with centrings are easy generalizations of the case 
presented here. 

F ± = A - B s  t / 2  is an orthogonal projector onto the d- 
dimensional hyperplane E ± (the perpendicular space). 
The fact that A and B commute means that E II and E ± are 
orthogonal ( F F  ± = 0). 

We can show (Appendix 1) that the matrices A and B 
must have a particular form, namely: 

(Pl) 
A = S 2 / 2 s ,  B = S / 2 s ,  

where S is a symmetrical traceless rational matrix, 
satisfying the equations 

S 3 = s s ,  Tr(S 2 ) = 2 s d  

F = (1/2s)(S 2 + sl/2s), 

81-" = l- 'S - -  s1/2] ", 

(2.1) 

/-,± __ (1/2s)(S 2 --  s1/2S)" 

(2.2) 

S F  ± = F X s  = - s l / 2  r ±. (2.3) 

We can also show (Appendix 1) the existence of a 
rotation matrix U, such that: 

(e2) 

F ± = UFU -! 

US + SU = O. (2.4) 

Actually, S and U are integer matrices in all cases of 
interest, a fact that we adopt as a fourth condition: 

(C4) S is an integer matrix, U e SL(n,  ~ ) .  
Some consequences of (P1) are contained in (P3) and 

(P4): 
(P3) E II ~ E ± is a 2d-dimensional hyperplane of E, 

and L o = E" ~ E ± N L is a 2d-dimensional lattice hyper- 
plane of L. The rank of L" is 2d (L II is therefore a dense 
set in Ell). The projection LIo I = F L  o is a submodule ofL II, 
which also has rank 2d and therefore a finite index in L". 
LIo I is used in order to define 'colours' of different vectors 
of L ff as follows: All vectors belonging to L~ are declared 
'black'. Then, we associate a colour with any coset in 
LII/LII o. Let E a be the ( n -  2d)-dimensional orthogonal 
complement of E II ~ E ± in E,. E a is parallel to a lattice 
hyperplane of L, L~ -- E a N L. We define the 'colour' 
lattice L p = F a L .  

r ~ = 1 - ( s  2 / s )  ( 2 . 5 )  

is the projector onto E ~. 
We show (Appendix 1) that LII/L~ p e ~-- L a / L  a and that 

the number of colours (index of LIo I in L It) is equal to the 
square of the volume of the primitive unit cell of L~. If 
n = 2d, there is no E a ( F  a = 0), the number of colours 
is 1 and S satisfies a simpler relationship: S 2 = sl  (1 is 
the identity), which is a particular case of (2.1). 

(P4) L~ and L~ = FXLo are both modules of rank 2d 
and we can define a natural isomorphism between them, 
as follows (Katz & Duneau 1986): J =  FJ-(F)  - l .  
According to (2.2), 

J u  = fi, (2 .6 )  

where fi is the algebraic conjugate of u. 
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J is nowhere continuous and cannot be extended to a 
linear transformation. J is of course different from U, 
which is linear and, like J, transforms LIo I into Lo ±. 

We mention that ( s = 5 ,  n = 6 ,  d = 3 )  in the 
icosahedral case, (s = 2, n = 4, d = 2) in the octagonal 
case, ( s = 5 ,  n = 5 ,  d = 2 )  in the decagonal case, 
(s = 3, n = 6, d = 2) in the dodecagonal case* (see 
Appendix 1). 

cos(cp") = (1/4s)[Tr(RS 2) + s'/2Tr(RS)] + 1 - (d/2), 

(3.3) 

cos(~o ±) = (1/4s)[Tr(RS 2) -s l /2Tr(RS)]  + 1 - (d/2). 

The proof of all these properties can be found in 
Appendix 2. 

Let us call quasirational generalized rotations those 
rational generalized rotations R that have the form (3.2). 

3. Quasirational rotations 

A rotation R" in the physical space produces coin- 
cidences in the Bravais module if an only if 
Rllel 1 =  ~-~qoeJ !, qij E ~) (Warrington, 1992, 1993a,b). 
We call this type of rotation a quasirational rotation and 
the set of coincidences the coincidence module 
C II = L II I") RIlL II. C II is a submodule of L II and we can 
define the coincidence ratio F," as the index of C" in L II. 

An equivalent definition of quasirational rotations can 
be given if we introduce the concept of the rational space 
of a module. We call rational space LI~ of a module L II 
the set of all combinations with rational coefficients of 
vectors in the module: L~ = ~-]i"=lqiel I, qi E ~-). A 
quasirational rotation with respect to a module L II is that 
rotation which leaves the rational space globally 
invariant: 

R"L~ = L~. (3.1) 

We can also define a rational space LQ of the 
hyperlattice L, in the way we did for L". Let us call the 
generalized rotations R[R ~ O(n)] that leave LQ invariant 
rational generalized rotations and define the coincidence 
hyperlattice as C = L M RL. The coincidence ratio 27 in 
the hyperspace is defined as the index of C in L. 

For a given quasirational rotation g II , there is always a 
rational generalized rotation R, such that any coincidence 
in L II produced by R II is the projection of a coincidence in 
L produced by R and reciprocally any coincidence in L 
produced by R projects onto a coincidence in L II 

produced by R". R must necessarily commute with the 
matrix S. In this case, we have FC = C II, ,~w = ~11 and 

R = R" ~ R ± ~ R zx, (3.2) 

where R ± is a quasirational rotation in E j- and R" is a 
symmetry of L p, the 'colour' lattice. 

Even if by definition det(R") = 1, R zx can be improper 
and de t (R)=  det(R zx) = +1 if n > 2d, both types of 
rational generalized rotations being possible. 

If d = 3 and the rotation axis of R II is r II, then the 
rotation axis of R ± is r ± -- J r  II . The rotation angles tp II , 

~0 ± are generally different (formulae that are valid for 
d = 2, 3): 

* Although the minimal dimension of a lattice L that gives by 
projection a dodecagonal or a decagonal module is 4 (Niizeki, 1989), 
the orthogonality condition (symmetry of the matrix S) demands 
minimal dimensions 6 and 5, respectively, of  the Bravais hyperlattice L. 

4. Module directions 

4.1 Hyperlattice transversal planes and module direc- 
tions 

For a better understanding of quasirational rotations, 
let us discuss the concept of module direction. We call 
module direction the set of all vectors in a module that 
are collinear with a given vector. In modules satisfying 
the conditions (C1)-(C3), all module directions are rank- 
two modules. It was shown by Katz & Duneau (1986) 
and discussed again by us in (I) that [(C1)-(C3) 
being true] module directions are projections onto E II 
of one (when n = 2d) two-dimensional lattice plane 
P c E II ~ E ± or several two-dimensional lattice planes 
e i  - "  P + ri, ri ~ Lp (one for each colour), which are 
transversal with respect to EII, E ± [they are parallel to 
E" ~ E ± and are 'on the edge' when looking from E II and 
from E ±, i.e. P N E II = F(P II) and P M E ± = F±(P±)]. 
We called these planes [see (I)] hyperlattice transversal 
planes (HTP). 

4.2 Arithmetic classes of  module directions 

As the lengths in a module direction form a dense set, 
there is no smallest length as in normal crystals. 
Nevertheless, in a module direction, we have periodic 
series of lengths nr", n ~ Y-?-, generated by the projections 
of primitive vectors r e L. Any two lengths belonging to 
different series are incommensurate. Some series are 
generated by r II vectors that are black, and contain only 
black vectors. Other series are 'coloured' (they are 
generated by a 'coloured' r" vector). Because 
¥ r e L, S2r e L o and FS2r = sFr,  in a coloured series, 
we have a black point after each s coloured points. We 
can pass from one series generated by a II to any other 
series generated by b It (a II and b II are collinear) by 
multiplying the lengths of the first series by 
qs 1/2 + p ,p ,  q ~ ~ (we eventually obtain a commensu- 
rate subseries generated by kb", k e ~7). Using (2.3), we 
show that this similarity corresponds in the hyperspace to 
the application of qS + p l  to the vector r ~ L. 

Let us denote by P(p,q;r) and P(r) the lengths of the 
projections onto E II of (qS + p l ) r  and of r, respectively. 
Using (2.2) and (2.3) [see also (I)], we show that 

P(p,  q; r) = (qs 1/2 +p)P( r )  

P(r) = {[x(r)s + y(r)]/2sl/2}, 
(4.1) 
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where 

x(r) = (1/s)(r ,  S2r) = ( l / s )  ~'~SikakjXiX j (4.2) 

y(r) -- (r, Sr) = ~ Sijxixj,  (4.3) 

if r = ~ x i e  i, x i ~ ~ .  
For those r that project onto black vectors, r e L o and, 

from (2.5), 

x(r) - (r, r) = ~ ~ .  (4.4) 

In (I) we have also discussed the values of the angles 
O ( p ,  q; r) formed by (qS + p l ) r  and by r with the 
physical  space, for r e L o. These angles are important for 
the geometry of the rational approximants of  quasicrys- 
tals and satisfy:* 

tan  O(p, q; r) = [(p - qsl/2)/(p + qsl/:)] tan  O(r) 

(4.5) 

tan  0(r) = {[x(r)s I/2 - y(r)] /[x(r)s  1/: + y(r)]}l/2. 

We introduced [see (I)] the concept of  compatibil i ty of  
module directions, which is an equivalence relation 
between module directions. We call two module 
directions compatible if there exists a black vector r~ 
on the first module direction and a black vector r~ on the 
second module direction such that 

tan  O(r 1) -- tan  O(r2). (4.6) 

We also showed in (I) that there is a simple arithmetic 
compatibil i ty criterion. Let f ( r ) -  s x 2 ( r ) -  y(r):  be a 
biquadratic integer-valued form defined on L o. We have 
a unique decomposition of the form 

f ( r )  = nl(r)nE(r)n4(r),  (4.7) 

where n l ( r  ), n2(r) are square-free integers, n l ( r  ) (which 
we call the compatibil i ty index) is the same for all 
vectors r ~ L o projecting onto the same module direc- 
tion and the compatibili ty condition is written 
n l ( r l )  = nl(r2). 

Let us here rename the compatibili ty the angle  
compatibil i ty in order to distinguish it clearly from 
another equivalence relation, which we introduce subse- 
quently. We call two module directions commensurate if  
there exist two commensurate lengths, one in the first 
direction, the other in the second direction: 
e ( r l ) / e ( r 2 )  = p / q ,  p, q E ~ .  

As any vector on a module direction is commensurate 
with a black vector (S2r ~ LoV r ~ L), we can consider, 
without losing generality, that r~ and r 2 are black. 

Using (4.1) and (4.5), we show that the ratios of  
lengths of  black vectors in two module directions are 
square-rooted rationals if  and only if  (4.6) is satisfied and 

* A rational approximant is a structure that is formed with the same 
stuctural units as the quasicrystal, but in a periodic arrangement. 

therefore the module directions are angle compatible. In 
this case, e ( r l ) / P ( r 2 )  = [n2(rl)/n2(r2)]l/2[ns(rl)/ns(r2)].  
Therefore, in order to have commensurabil i ty,  we must 
have angle compatibil i ty and n2(r 1) = n2(r2). In this case 
not only is the series of  lengths containing r I 
commensurate with the series of  lengths containing r~, 
but any series in one module direction is commensurate 
with a series in the other module direction (all these 
series are produced by similarities qs 1/: + p from a given 
one). In order to obtain a commensurabi l i ty  criterion that 
is independent of  the series chosen on the module 
direction r II, we define a new index n[(r), which we 
call the commensurabil i ty index and which is obtained 
from n:(r)  by el imination of all square-free factors of  
the form p : - s q : .  The  commensurabi l i ty  criterion is 
n [ ( r i ) = n [ ( r : ) ,  where n[(r)  does not change for 
different vectors r ~ L o projecting onto the same module 
direction.* 

To conclude, let us note that commensurabi l i ty  implies 
angle compatibility, but this is not true conversely. For 
instance, in an icosahedral Bravais module,'{" twofold, 
threefold, f ivefold and [r l0]  axes ( [ r l0]  is an axis 
making an orthogonal base with a fivefold and a twofold 
axis) have indices (n 1, n~) equal to (1,1), (1,3), (5,1) and 
(5,1), respectively. In consequence, f ivefold and [r l0]  
axes are angle compatible and commensurate,  but 
threefold and twofold axes are only angle compatible. 

*The proof uses results from Mordell (1969) and is given by 
Radulescu (1994). 

t There are in fact three types of icosahedral modules: P, F and C 
types, which come respectively from primitive (P), face-centred (F) and 
body-centred (C) hypercubic hyperlattices (Rokshar, Mermin & Wright 
1987). As all these types of modules have the same rational space, the 
classes of module directions are the same. 

Fig. 1. For an icosahedral module, the rotation [i 10'011 --1 0 0 -1 1 1 
R = ½  0 0 - 1  - 1  

I I l 0 (~' = 9o°' ~ = 9o°) 

- 1  1 0 1 
- 1  - 1  1 0 

conserves the HTP containing [0, 0, 0, -1,0, 1] (the rotation axis in 
the physical space is the projection of this HTP) and transforms the 
HTP containing [0, 1,0, 0, 0, 0] (projecting onto a fivefold axis in 
physical space) into the HTP containing [- 1,0, 2, 0, 1,0] (projecting 
onto a [rl0] axis in physical space). 
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The connection between quasirational rotations and 
classes of module directions is such that a quasirational 
rotation necessarily transforms module directions into 
module directions belonging to the same commensur- 
ability class, in order to produce coincidences on all 
module directions. The form (3.2) of a quasirational 
rotation means also that quasirational rotations permute 
colours but transform black vectors into black vectors. 

The quasirational generalized rotations carry HTPs 
into commensurate HTPs (we call two HTPs commen- 
surate if they correspond to commensurate module 
directions) and produce two-dimensional coincidence 
lattices in each of these HTPs (Fig. 1). In particular, the 
HTP corresponding to the rotation axis d II is kept fixed. 

5. Coincidence quasilattice 

A quasiperiodic tiling can be obtained by cut and 
projection (Katz & Duneau, 1986) from the hyperlattice. 
The vertices of the quasiperiodic tiling form a discrete 
subset of the Bravais module. 

The same quasirational rotations that produce coin- 
cidences in the Bravais module produce coincidences in 
the quasiperiodic tiling also. We call the set of 
coincidences in the tiling the coincidence quasilattice 
(Fig. 2). 

Cq = T n RIIT, (5.1) 

where T is the quasiperiodic tiling, obtained by cut and 
projection. 

T = r[L n (D + Eli)]; (5.2) 

D + E II is called the strip and D is the acceptance domain 
(usually the interior of one or several polytopes in 
E ± ~ EZX). 

Using (5.1) and (5.2), we show that Cq is obtained 
by cut and projection from the coincidence hyperlattice 
with the acceptance domain D* = D fq R ± D  : Cq = 
F [C n (D* + Eu)]. 

We notice that the ratio ~,~ (actual coincidence ratio) 
of the density of points in T to the density of points in Cq 
is greater than ,~ by a factor that is the ratio of the 
volumes of D and D*; if D is close to a sphere and the 
rotation R ± is around an axis that passes through the 
centre r~ of this sphere, then this factor is close to one 
(Fig. 3). 

,U and E,, depend both on the position r~ of the 
rotation axis of R" and on r~-. r~ and r~ are relative to the 
origins of L II and L~, respectively. First of all, there are 
coincidences if and only if r~ satisfies 

RIl(r~ + r l )  = r~ + r~, I" (5.3) 

where rl I, r~ E L II. The proof of this condition uses the 
property that a rotation around an axis that passes 

1 This condition means that r~ and R II r~ belong to the same coset of 
L ~o/L II . 

through r~ is equal to the rotation about the origin, 
followed by a translation r ~ -  RIIr~. We use the same 
property to show that for all rotation axes satisfying (5.3) 
the value of 2? is the same. All the translation vectors 
r~ ~ L  II satisfy (5.3), but there are some vectors 
from L~ - L II that also satisfy (5.3). For instance, turning 
the tiling in Fig. 2 around a vertex (which belongs to L II) 
or around the centre of a square tile (which does 
not belong to L tl, but belongs to L~) produces the 

(b) 
Fig. 2. Nonequivalent coincidence quasilattices E = 17 in an octagonal 

tiling (CSL vertices designated with dots). The rotation matrices are 
equivalent by a symmetry of the hyperlattice, which is not a 
symmetry of the Bravais module (matrix U o in Appendix l). 

6 _,0 _3 6] 
3 6 12 -10 (~o~ ~ = 12.35o '~° ± = 105.72o); (a)R = v7 10 3 6 1 

12 10 3 

[ 6  -3 10 12] 
-12 6 -3 10 tp~ = 105.72 °, t¢ t = 12.35°); ( b )R=~  -1 -12 6 - 

~ -10 -12 
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same density of coincidences in the module (same value 
of ~Y). 

For a finite given value of E [so for r~ satisfying 
± the (5.3)], 2? a depends on the difference between r C , 

position of the rotation axis in E ± (r~ = Jr~), and rex. "~a 

± and is infinite (no takes a minimum value if re x -- rc ,  
coincidences) if D and R±D are disjoint (see Fig. 3). 

6. Equivalence of quasirational rotations 

The main object studied in the crystallography of grain 
boundaries is the bicrystal (Bollmann, 1970), which is 
the superposition of the two rotated Bravais lattices of the 
grains. In our case, the 'biquasicrystal'  is B = T U RIIT. 
This representation is not unique because of the 
symmetry of the grains: B=G-fI(TUGIRIIG~1T), 
where G 1, G2 ~ G~, G~ being the symmetry group of 
the quasicrystal. In analogy with Warrington & Buffalini 
(1971), we call two quasirational rotations equivalent if 

: G,RIG  ', G,, G2 
Equivalent quasirational rotations generate equivalent 

coincidence quasilattices and coincidence modules, 
which have of course the same values of E. The 
equivalence of generalized rotations is defined in the 
same way: 

R 2 = GIRIG2 l, G 1, G 2 E GQ, (6.1) 

where G O is an embedding of G~ in the holohedry H(L) 
of L. 

The symmetries G O and the generalized inflations* 
pS 2 + qS + r l ,  p, q, r ~ Z are elements of H(L) that 
commute with S (see Janssen, 1990): 

GS - SG = 0. (6.2) 

* A generalized inflation is a transformation from L to L, which acts 
as a similarity in E II and E ±. If s = 4k + 1, then p and q can also be 
half-integers. The generalized inflations contain the ' true' inflations 
(Janssen, 1990), which are invertible and, therefore, unimodular. 

D* 

D 

r 

ori 

rotation axis 
.k Fig. 3. Dependence of  IJ~ on the positions r c , r~- of  the rotation axis 

and of the acceptance domain D in the perpendicular space; E~ is 
proportional to the inverse of the hatched volume D*. 

We can, in certain cases, obtain coincidence quasi- 
lattices that are nonequivalent, but that have the same 
value of Z' if G 1, G 2 in (6.1) are replaced by the 
transformations T 1, T 2 that belong to H(L) but that 
anticommute with S (both R~ and R 2 must commute with 
S): 

ST + TS ---0. (6.3) 

A transformation that satisfies (6.3) is of the form 
T = ToU, where T O is a generic transformation that 
satisfies (6.2), and U is a particular transformation that 
satisfies (6.3) and therefore interchanges the physical and 
the perpendicular space [see (P2) and Appendix 1]. 
URU -l have permuted values of ~0 ±, ~11, but the same 
value of 2?. If q~- -- ~o", URU -l is still equivalent to R. 
It is only the case ~o ± :/: ~o" that can lead to a degeneracy 
of Z' (nonequivalent coincidence quasilattices; see 
Fig. 2). 

7. Concluding remarks 

For quasicrystals, quasirational rotations generalize 
coincidence rotations from the crystallography of normal 
crystals. The coincidence module and the coincidence 
quasilattice generalize the concept of coincidence site 
lattice. We have developed in this paper the geometrical 
framework for the study of coincidence modules and 
coincidence quasilattices. 

The quasirational rotations for an important class of 
quasicrystals (those whose geometry is governed by 
quadratic irrational numbers) are related to a form 
sx 2 _ y2. Module directions can be classified according 
to their arithmetic properties in angle-compatibility 
classes and commensurability classes; the class indices 
are given by the form sx 2 - y 2 .  

We showed that there is some degeneracy of the 
values of the coincidence ratios, which is due to 
symmetries of the hyperlattice, which are not symmetries 
of the quasicrystal. 

An extensive presentation of coincidence modules and 
quasilattices, including coincidence ratios in the case of 
the icosahedral symmetry, will be addressed in a 
forthcoming paper (Warrington, Radulescu & LUck, in 
preparation). 

The analysis here is interesting in itself, but may be 
useful for the classification of grain boundaries in 
quasicrystals. The coincidence quasilattice (and any cut 
through it) is quasiperiodic, which means that grain 
boundaries in quasicrystals must be quasiperiodic. The 
experimental study of grain boundaries in quasicrystals is 
at its very beginning, the only special disorientations 
which have been reported are Z ' = 5  (Singh & 
Ranganathan 1993; Dai & Urban, 1993), 2 ? =  11 
(Warrington, 1988, 1993b) in icosahedral quasicrystals. 

After submission of this paper we learned of a paper 
by Pleasants, Baake & Roth (1994) treating the CSL 
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problem for planar modules with n-fold symmetry by 
using prime factorization in cyclotomic fields. The 
approach that we have presented is complementary. 

A P P E N D I X  1 

The matrices A and B must satisfy 

(A + Bsl/2) 2 = A 4- Bs 1/2, 
(AI.1) 

i . e . A  2 + s B  2 = A ,  2 A B - B .  

As A and B are symmetrical and commute, they can be 
simultaneously diagonalized in some algebraic extension 
of Q. If Au = ~.u, Bu = Ixu, then ~2 4- SIX 2 : ~., 

2~.IX = IX, a system that has the following solutions: 

# = 0 ,  ~ . = 1  

IX = 0 ,  X = 0  (A1.2) 

Ix = + l / 2 s  1/z, ~. = 1. 

The first solution (A 1.2) is forbidden by condition (C2), 
the other two imply that A = 2sB 2, B 3 =  (1/4s)B. If 
S = 2sB, then A = (1/2s)S 2, B = (1/2s)S, S 3 = sS and, 
because F = ( 1 / 2 s ) ( S  z 4-sU2S) is a projector on a 
hyperplane of dimension d, Tr(S 2) = 2sd,  Tr(S) = 0. 

In order to define the matrix U, we proceed as 
following: Let UlKerS = 1. Let Pi, i =  1,d, be d 
mutually orthogonal HTPs (Pi C E II ~ E±), correspond- 
ing to d mutually orthogonal module directions u~. S has 
the form [So2 _~/2 ] in the basis (ui, fii = Jui). Then, U 
must be of the form [°0] in order to satisfy 
US 4- SU -- 0. Therefore, the restriction of U to Pi must 
be either a n'/2 rotation or a reflection in a plane whose 
normal lies in Pi and makes an angle 7r/4 with u i. 

A rotation of 7r/2 in an HTP is a rational rotation if 
and only if the index n 1 = 1. In this case, for any 
vector r ~ Pi N Lo, r' = [ n l ( r ) l / Z n z ( r ) n 2 ( r ) ] - l [ ( r  , S r ) r -  
(r, r)Sr] is rational, orthogonal to r and IIrll=llr'll [see 
(P1), (4.4) and (4.7)]. A reflection in a plane making an 
angle zr/4 with u i is rational if and only if the vector r 
making an angle rr/4 with u i is rational. But in this case, 
y(r) = 0 and nl(r ) = s [see (4.5), (4.7)]. Actually, in all 
interesting cases, there are d mutually orthogonal 
directions of indices n~ ~ {1, s} and, more than that, U 
is an integer matrix. For instance, in the icosahedral case, 
a twofold, a fivefold and a [rl0] axis have indices l, 5, 5, 
respectively (~4.2) and U is composed of a rr/2 rotation 
in the HTP of the twofold axis and two reflections. 

Finally, we give some theorems about colours, which 
are cosets in LII/L~. First, 

LII/LII ° p e ~-- Lzx/Lzx. (A1.3) 

To show (A1.3), we use the first isomorphism theorem 
(Hungerford, 1984) and L ~ L  p,  L r L  ", LorLII  o, in order 
to show that L / L  o ~_ L p,  L / L ~  ~_ L II, L o _~ LIo I, and then 
the third isomorphism theorem (Hungerford, 1984). 

Let  {ai}i=l,n_2d be a primitive basis of L~. 
A vector p in L p is the projection of a vector r ~ L, 

p = FAr, therefore has the form p = ~ ria i, where the 
coordinates r i must satisfy ( r -  ~ r i a  i ,aj)  = 0, 
i.e.~-~ ri(ai, aj) = (r, aj). As {ai}i=l,n_2d is primitive, 
xj = (r, a )  can take any integer values. 
LeA = { '~x ia i l x  i ~ ~}, therefore the number of colours 
is #(LP/LeA) = det(ai, ai) = I22, $2 being the volume of 
the primitive cell of L~ (# is for cardinal). 

The matrices S and U and the basis {ai}i=l,n_2d of L~ 
for icosahedral, octagonal, decagonal and dodecagonal 
quasicrystals are 

Si --- 

0 1 1 1 1 1 
I 0 1 - 1  - 1  1 

1 0 1 - 1  - 1  

i - , , ° l -  i, --1 --1 1 0 
1 --1 --1 1 

1 0 0 0 0 0 
0 --1 0 0 0 0 

0 Ui = 0 0 0 0 - 1  
0 0 - 1  0 0 0 ' 

'o 0 0 0 0 - 
0 0 - 1  0 

SO 

0 
1 0 1 0 
0 1 0 ' 

- 1  0 1 

UO --'-- [i ° °  
0 0 
0 - 1  
1 0 

0 
1 
0 ' 
0 

Sde 

0 
1 

- 1  
- 1  

1 

1 
0 
1 

- 1  
- 1  

- 1  
1 
0 
1 

--1 

- 1  
- 1  

1 
0 
1 

- 1  
- -1  , 

1 
0 

Ude --- Ii°°°il 0 1 0 
0 0 0 , 
1 0 0 
0 0 1 

ai de = [1, 1, 1, 1, 1], 
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Sdo --  

. 

0 1 0 0 0 - 1  
1 0 1 0 0 0 
0 1 0 1 0 0 
0 0 1 0 1 0 ' 
0 0 0 1 0 1 

- 1  0 0 0 1 0 

Udo 

1 0 0 0 0 0 ooooo  
0 0 0 - 1  iOOlOi, 0 - 1  0 0 
1 0 0 0 

a~° = [ 1 , 0 , - 1 , 0 ,  1,01, a~° = [0, 1, 0, - 1 ,  0, 1]. 

APPENDIX 2 

Let us show the existence of a matrix R satisfying the 
following conditions: 

(Rr I = r 2, r l, r 2 E L) =~ (RI IF r l  = F r 2 )  (A2.1) 

(RIIrl = r~, r I, r~ ~ L") =~ 
ii 

(3r 1, r 2 E L, such that Rr  I = r 2, r I = r r l ,  r2 = Fr2). 

(A2.2) 

Using (A2.1) and (A2.2), we prove the following 
theorem: 

Theorem 1. R exists and is of the form 
R = R II 6) R ± 6) R A, with R II , R ± acting in E II , E ± and 
R zx is a symmetry of LP; the angles of R II, R ± satisfy 
(3.3). 

The proof follows from three lemmas: 

Lemma 1. If r l, r E E L o, then IIFrlll-- ( l / k )  [IFrEll 
(llr~ll= (l/k)IIr211, IIFlr~ll - (l/k)IIF±r211), where 

k e ~ .  

The proof of this lemma follows from (P1) and (4.4). 

Lemma 2. RL  o = Lo. 

As discussed in ~4, for any vector in L II there is a black 
vector that is commensurate with it, being s times longer. 
Therefore, R II produces a rank-2d coincidence module in 
LIo I" 3pl I, ql I E LIo I, i = 1, 2d such that RIIpll = ql I. We 
define R in order to satisfy (A2.2): 

R(pi + 8~) = qi  "4- t~2 

8 ~ , ~5 2 i E L e~ , P i , q i  E L o . 

Let us show that we must have 

(A2.3) 

~ - R ~  ~ L~. (A2.4) 

If this is not true then (,42.3) and (A2.1) imply that 
RIIp]l = ~.l, with ~1 =~ q]l. 

As IIPl I II -- Iltl~ II, according to lemma 1, 
I lPi l l -  Ilqill and, from (A2.3), (A2.4), ~2_  R S l - - 0 .  
This and (A2.3) entail that RL o = L o. 

Lemma 3. RE II = EII, RE x = E ±. 
Consider an arbitrary module direction in LIo I and 

a series of vectors in L o, r n - - . r  II~LIo I. Then, 
Rrn = (1/k)p n, where p,  ~ L o, k ~ ~ .  By continuity, 
(1/k)p~---~Rr II. According to (A2.1), RI I (Fr~)=  
(1 /k)( rpn) ,  so that U r r n  II -- (1/k)ll/ 'Pn II- Also, 
I lr~ll-(1/k)llp~ll ,  then by Lemma 1, IIF±r~ll - 
(1/k)llFXpnll . As IIFXr~ll --, 0, IIFXp~ll --* 0 and 
Rr l i e  EII. This shows that REll--El l .  As R is orthog- 
onal, REx = E ± also. 

Therefore, R = R N 6) R ± 6) R a, where R a is chosen 
such that it performs the same permutation of colours in 
LPas RUdoes in L". 

Finally, (3.3) comes from T r ( R F ) = 2 c o s ( c p  II) 
+ d - 2, and T r ( R F  ±) -- 2 cos(q~ ±) + d - 2, where 
d = 2, 3 is the dimension of the physical space. 

Theorem 2. R satisfies F C  = C", 17 = I7 II. 

Proo~ The first property follows directly from (A2.1) 
and (A2.2). For the second property, we use the first 
isomorphism theorem (Hungerford, 1984), Lr-.L II and 
C < C "  in order to show that L/L~  ~_ L II, C / L ~  ~ - C  II, 
and the third isomorphism theorem (Hungerford, 1984) 
in order to show L / C  ~- L" / C  II, and therefore # ( L / C )  = 
#(L"/CII). 

Notice that it may happen that R"pl I = ql .I, with pl I, ql I 
of different colours so that R zx is not necessarily the 
identity. In this case, the rotation R = R" 6) R ± 6) I zx (1 zx 
is the identity in E zx) is also quasirational, but E(R) is a 
multiple of 1711 (bicoloured coincidences are skipped). 
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Abstract 

Calculations of electron diffraction intensities in trans- 
mission electron microscopy commonly assume a model 
representing surfaces and interfaces in crystals as flat 
boundaries (fiat-boundary model, FBM). It is shown that 
the independent-atom model (IAM) representing the 
crystal potential as a superposition of spherical atomic 
potentials leads to improved boundary conditions. 
Intensities calculated from the two models at large 
deviation from the Bragg peak in weak reflections (e.g. 
200 in InGaAs) differ significantly. Results from both 
types of calculation are compared with an experimental 
diffraction pattern recorded using energy-filtered large- 
angle convergent-beam electron diffraction from an 
Ino.53Ga0.47/InP bicrystal. It is shown that calculations 
using the IAM give a better agreement with experiment. 

1. Introduction 

Calculations of electron diffraction intensities from thin 
crystals in transmission electron microscopy (TEM) 
usually assume a sharp cut-off of the crystal potential 
at surfaces and sharp transitions of the potential at 
interfaces inside the sample. This leads to a convenient 

* Present address: MRC Laboratory of Molecular Biology, Hills 
Road, Cambridge CB2 2QH, England. 

set of boundary conditions that can be used in dynamical 
theory (see Peng & Whelan, 1990a, for a recent review). 
The effects of contamination and the detailed three- 
dimensional atomic structure of surfaces and interfaces 
are generally ignored owing to their small contribution to 
the total volume of the crystal. Earlier attempts at 
understanding the effect of boundary conditions in 
multislice calculations have been made for forbidden 
reflections (Stobbs, Boothroyd & Stobbs, 1989; Gipson, 
Lanzerotti & Elser, 1989). Here, we report a different 
representation of the crystal potential which pays more 
attention to the spatial variation of the potential at the 
atomic level at interfaces and surfaces. This leads to a 
significantly improved agreement between calculated 
and observed intensities in cases where the reflection 
under consideration is weak, such as the 200 reflection 
from InGaAs. Contamination is still assumed to play a 
minor role and is ignored in the calculations. 

2. The crystal potential at surfaces and interfaces 

In an infinite perfect crystal, the potential can be 
represented by a Fourier series (Bethe, 1928). Disconti- 
nuities at surfaces and interfaces perturb the potential 
inside the bulk. However, it is usually assumed that these 
perturbations are cont'med to a small volume and that the 
potential in the bulk is unchanged. Thus, the situation can 
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